๐ญ. ๐ฆ๐ฐ๐ฎ๐น๐ฎ๐ฏ๐น๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐๐ผ๐ฟ๐ฎ๐ด๐ฒ
โข Relational vs. NoSQL: Know when to use SQL vs. NoSQL databases.
โข Partitioning: Vertical and horizontal partitioning (sharding). Understand trade-offs.
โข Indexing: Covering indexes, primary vs. secondary indexes.
โข Consistency Models: Strong, eventual, causal.
๐. ๐๐๐๐ก๐ข๐ง๐
โข Client-side vs. Server-side Cache: Understand where caching should happen.
โข Caching Strategies: Write-through, write-back, write-around.
โข Distributed Cache: Redis, Memcached.
โข Cache Eviction Policies: LRU, LFU, etc.
๐. ๐๐จ๐๐ ๐๐๐ฅ๐๐ง๐๐ข๐ง๐
โข Horizontal Scaling: Why and how to horizontally scale services.
โข Load Balancing Techniques: Round-robin, consistent hashing.
โข Reverse Proxy: Understand how to use Nginx, HAProxy.
๐. ๐๐ฌ๐ฒ๐ง๐๐ก๐ซ๐จ๐ง๐จ๐ฎ๐ฌ ๐๐ซ๐จ๐๐๐ฌ๐ฌ๐ข๐ง๐
โข Message Brokers: Kafka, RabbitMQ. When to use queues vs. streams.
โข Event-Driven Architecture: Benefits of decoupling and event sourcing.
โข Task Queues: For delayed jobs or retries.
๐. ๐๐๐ญ๐๐๐๐ฌ๐ ๐๐๐๐ ๐๐ง๐ ๐๐ซ๐ข๐ญ๐ ๐๐๐๐ฅ๐ข๐ง๐
โข Read Scaling: Master replication, read replicas.
โข Write Scaling: Challenges with partitioning for writes, leader-election.
โข CAP Theorem: Consistency, Availability, or Partition tolerance may be compromised.
๐ฒ. ๐๐ถ๐๐๐ฟ๐ถ๐ฏ๐๐๐ฒ๐ฑ ๐ฆ๐๐๐๐ฒ๐บ๐ ๐๐ผ๐ป๐ฐ๐ฒ๐ฝ๐๐
โข Consensus Algorithms: Paxos, Raft.
โข Conflict Resolution: Last Write Wins, CRDTs, vector clocks for data reconciliation.
๐ณ. ๐ฅ๐ฒ๐น๐ถ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐ ๐ฎ๐ป๐ฑ ๐๐ฎ๐ถ๐น๐ผ๐๐ฒ๐ฟ
โข Redundancy: Active-passive vs. active-active configurations.
โข Health Checks.
โข Retries and Circuit Breakers: How to protect systems from cascading failures.
๐ด. ๐๐๐ก๐ (๐๐ผ๐ป๐๐ฒ๐ป๐ ๐๐ฒ๐น๐ถ๐๐ฒ๐ฟ๐ ๐ก๐ฒ๐๐๐ผ๐ฟ๐ธ๐)
โข Static Content Delivery: Why use a CDN, how does it work?
โข Caching at the Edge: How CDNs improve latency for end users.
๐ต. ๐๐ฃ๐ ๐๐ฒ๐๐ถ๐ด๐ป ๐ฎ๐ป๐ฑ ๐ฅ๐ฎ๐๐ฒ ๐ ๐ฎ๐ป๐ฎ๐ด๐ฒ๐บ๐ฒ๐ป๐
โข REST vs. GraphQL: Difference and practical use-cases for each.
โข Pagination and Filtering: Strategies for efficiently fetching data.
โข API Versioning: Best practices for evolving APIs.
โข Throttle Requests: Why rate limiting is essential, algorithms like token bucket, leaky bucket.
๐ญ๐ฌ. ๐ฆ๐ฒ๐ฎ๐ฟ๐ฐ๐ต ๐ฆ๐๐๐๐ฒ๐บ๐
โข Indexing: Building and maintaining indexes for fast search.
โข Full-Text Search Engines: ElasticSearch, Azure AI Search.
โข Ranking and Relevance: Basic understanding of how scoring works.
๐ญ๐ญ. ๐ ๐ผ๐ป๐ถ๐๐ผ๐ฟ๐ถ๐ป๐ด ๐ฎ๐ป๐ฑ ๐ข๐ฏ๐๐ฒ๐ฟ๐๐ฎ๐ฏ๐ถ๐น๐ถ๐๐ ๐ฎ๐ป๐ฑ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐
โข Metrics Collection: Prometheus, Grafana.
โข Distributed Tracing: OpenTelemetry, Sentry.
โข Centralized Logging.
โข Authentication and Authorization: OAuth, JWT.
โข Encryption: Data in transit vs. data at rest.
If you master these 11 areas, you’ll be ready for most system design interviews thrown at you.